
1

AMSeT Alfresco SWORD Interface
Developer Guide

November 2009

Table of Contents
What is this document? .. 1
Who should read this document? ... 2
Introduction ... 2
Software Requirements .. 2
AMSet Alfresco SWORD Software .. 3

Overview ... 3
Licensing ... 3
Main SpringMVC Beans .. 3

AMP Files ... 4
config ... 4
lib .. 5
/web/jsp ... 5
module.properties .. 5
file-mapping.properties ... 6
Loading AMP module with Module Management Tool .. 6

Compliance with SWORD Profile 1.3 .. 6
Section A. 1.1. ... 6
Section A. 2 Mediated Deposit. ... 6
Section A. 2.1. ... 7
Section A. 2.2. ... 7
Section A. 3 Developer Features .. 7
Section A. 3.1. NoOp (Dry run) .. 7
Section A. 3.2. Verbose ... 7
Section A. 3.3. Client and Server Identity .. 7
A 6. Nested Service Description .. 7
B 5.1. X-On-Behalf-Of .. 7
B 5.3. Creating a Resource ... 7
B 5.4. Editing a Resource ... 7
B 5.5. HTTP Response Codes ... 7
7. Category Documents .. 8
8. Service Documents .. 8
8.1. Workspaces ... 8
9.2. Creating Resources with POST ... 8

Future Work .. 8
Compliance Testing ... 8
NoOp and Verbose .. 8
Authentication and Authorization ... 8
Look and Feel .. 8
XML generation ... 8
Spring/Alfresco Configuration Files ... 9

Links .. 9
About this document ... 9

What is this document?
This is a deliverable from the JISC Alfresco Management and Security Toolkit (AMSeT) project
which was funded from the Repositories: Rapid Innovation strand of the 12/08 JISC Information
Environment and e-Research call and ran from 1 April to 30 September 2009.

AMSeT Alfresco SWORD Interface

2

Who should read this document?
This document is intended for developers who wish to create applications that use a SWORD interface
to the Alfresco content management system.

Introduction
This document provides a technical description of the SWORD document deposit interface created
for the Alfresco content management system as part of the JISC AMSeT project.

Software Requirements
Java 5.0 or later

NetBeans 6.7.1

Eclipse Java JEE IDE (Galileo).

Alfresco Labs 3.2 SDK

Alfresco Community Edition 3.2 (running on bundled Apache Tomcat 6.0.18)

MySQL 4.x or 5.x.

Development platform details are as follows.

• Hardware: MacBook Pro, Intel Core 2 Duo, 2.8 GHz 4 GB RAM.

• IDE: NetBeans IDE 6.7.1 (Build 200907230233)

• Java: 1.6.0_15; Java HotSpot(TM) 64-Bit Server VM 14.1-b02-90

• System: Mac OS X version 10.6.1.

• GlassFish 2.1

Technologies employed.

• SWORD common core

• Alfresco 3.2 core and repository api

• SpringMVC (Spring 2.0.8)

• JSP 2.1

• JSTL 1.2

• XMLBeans 1.1

• Apache HttpClient 4.0.1

• Content Repository for Java, JSR 170

• SWORD 1.3

AMSeT Alfresco SWORD Interface

3

AMSet Alfresco SWORD Software

Overview
Although it is possible to insert plain Java into an Alfresco WAR file, the application is wired
together using the Spring framework and offers automated installation of extension modules for Spring
applications. Hence, the Alfresco SWORD module was written using SpringMVC.

The formal mechanism for adding functionality to Alfresco is to create an Alfresco Module Package
(AMP) file and to load this into Alfresco using the special tool provided, the Module Management
Tool (MMT). Hence the first step in the development process was to create a SWORD front end Web
application using Alfresco jars to provide an API. Then the application was converted to an AMP and
installed in the alfresco.war.

SWORD is based on the Atom Publishing Protocol and there is a core object hierarchy
of ServiceDocument.Service.Workspace.Collection where there can be multiple
workspaces and collections. The SWORD application must initially return a representation of the
ServiceDocument object which offers the user a list of details of the collections to which deposits
are possible. A document can then be deposited by uploading a file using the HTTP POST operation
to the collection URL returned by the service document. AMSeT offers a Web application client for
the deposit process. Posting from an application was tested using Apache HttpClient.

The original SWORD project produced a common-core.jar with a client JavaServer Pages (JSP)
Web application. Although these JSPs were used as HTML templates for the interface the underlying
implementation was different in 2 respects: Java Standard Tag Library (JSTL) was used instead of
raw Java code in the JSPs; and custom workspace and collection classes were used instead of the
common-core equivalents due to the the incompatibility of the data structure with a nested bean
structure accessible to JSTL expression language.

A ServiceContext object is used to hold a ServiceDetails object along with the
ServiceDocument. ServiceDetails contains metadata about the service.

Initialization data on the collections available in a service are provided using ResourceBundle
property files. It is a simple matter to re-implement the interface involved here. For example, a list
of collections might be obtained by direct interrogation of the Alfresco repository for folders that
are assigned aspects that identify them as SWORD collections. For this project the target SWORD
collection was taken to be the company-home folder which is created by the default Alfresco
installation.

A couple of XML schemas were written to represent the ServiceDocument and XMLBeans used
to produce the corresponding XML documents.

XMLBeans was also used to create the entity document reponse.

Licensing
All AMSeT code is released under the Apache 2 license. Copyright belongs to the University of Leeds.

Main SpringMVC Beans
There are 2 principal functions provided by a SWORD service, to return a service document and to
perform a file deposit to a collection. The SpringMVC DispatcherServlet passes control to 2
controllers (request handlers) to perform these functions.

A web application route into an Alfresco SWORD collection is handled by the
ServiceDocumentFormController and the DepositSubmitFormController. The
latter delegates to a AlfrescoDepositManager class which carries out the deposit of the resource

AMSeT Alfresco SWORD Interface

4

and the media link entry. The third handler, HomePageAbstractController, populates the
home page with some service data.

DepositSubmitFormController handles deposit requests that originate from an HTTP form
POST (multipart/form-data). A Spring interceptor bean handles non-multipart requests which then
skirt the main controller.

AMP Files
The structure of an AMP file is shown below.

 /
 |
 |- /config
 |
 |- /context
 |
 |
 |- /lib
 |
 |- /licenses
 |
 |- /web
 |
 |- /jsp
 |
 |- /css
 |
 |- /images
 |
 |- /scripts
|
|- module.properties
|
|- file-mapping.properties

config
The recommended package structure for an Alfresco AMP project is
alfresco.module.projectpackages. In AMSeT, alfresco.module.sword has been
used. The directory structure in the config directory must follow this package structure. In the
directory config/alfresco/module/sword is placed the module-context.xml file. This
contains a Spring beans document that points to the module's Spring configuration files. In this case
we have the following.

Listing 1.

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE beans PUBLIC '-//SPRING//DTD BEAN//EN'
 'http://www.springframework.org/dtd/spring-beans.dtd'>

<beans>
<import
 resource="classpath:alfresco/module/sword/context/service-context.xml" />
</beans>

AMSeT Alfresco SWORD Interface

5

In this context directory is the service-context.xml file which contains the module's bean
definitions:

Listing 2.

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE beans PUBLIC '-//SPRING//DTD BEAN//EN'
 'http://www.springframework.org/dtd/spring-beans.dtd'>

<beans>

 <!-- SWORD AMP -->

 <bean id="controllerClassNameHandlerMapping"
 class="org.springframework.web.servlet
 .mvc.support.ControllerClassNameHandlerMapping"/>

 <bean id="urlMapping"
 class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">
 <property name="mappings">
 <props>
 <prop key="home">homePageAbstractController</prop>
 <prop key="results">resultsController</prop>
 </props>
 </property>
 </bean>

 <bean id="viewResolver"
 class="org.springframework.web.servlet.view.InternalResourceViewResolver">
 <property name="viewClass"
 value="org.springframework.web.servlet.view.JstlView"/>
 <property name="prefix" value="/WEB-INF/jsp/" />
 <property name="suffix" value=".jsp" />
 </bean>
 ...
 ...
 ...

lib
Jar files for the project.

/web/jsp
Since all the JSP files in this module are hidden under WEB-INF this directory is empty. There isn't a
default mapping that puts JSP files in WEB-INF so a custom mapping has to be introduced by adding
an entry in the file-mapping.properties file.

module.properties
This is a mandatory file which contains metadata about the project used by the MMT. In this module
we have the following.

AMSeT Alfresco SWORD Interface

6

Listing 3.

SWORD AMP
module.id=sword
module.title=SWORD AMP
module.description=Builds AMP for SWORD interface
module.version=1.0

file-mapping.properties
The directory WEB-INF/jsp was introduced at the top level of the AMP file and the module jsp
files were placed here. In order for the jsps to be placed in the /WEB-INF/jsp directory of the
application, the following line must be present in the file-mapping.properties file.

WEB-INF/jsp=/WEB-INF/jsp

Loading AMP module with Module Management Tool
The MMT inserts a module into an Alfresco WAR file when the software and associated resources are
structured according to the AMP format. [A sample application in the Alfresco Software Development
Kit (SDK) is provided whose build file contains a target for automatically converting applications to
AMPs and loading modules into a given Alfresco WAR.]

There is a more convenient means of loading an AMP. On installing Alfresco Community Edition 3.2
there is an amps directory with an add-amps-here.txt file containing the following text.

To help you manage AMP extensions to your Alfresco server, you can place AMP files in this directory
and use the apply_amps script to perform the update. Usually, you only need to run the apply_amps
script when you add a new AMP to the directory, or when you upgrade your Alfresco server. Whenever
the script is run, a backup of the core server file is made (the alfresco.war file).

The MMT tool worked as stated and the Alfresco log (alfresco.log) and Spring standard output
provided useful error information.

There was one wrinkle in the installation process, however. The module, being a SpringMVC
application, requires that the Spring dispatcher servet be declared in the web.xml file. The Spring
container, seeing the servlet, requires a dispatcher-servlet.xml configuration file. At this
point, all the AMSeT-SWORD Spring bean definitions were put in this file and placed in the WEB-INF
directory. Despite some definitions also being present in the service-context.file everything
worked OK and was left like that.

Compliance with SWORD Profile 1.3
This section follows the structure of the SWORD Profile 1.3 document and provides information on
the AMSeT implementation.

Section A. 1.1.
The value of all q attributes for the acceptPackaging elements have been set to 1. Although
Alfresco can accept any type of file as deposit, no package processing will be possible unless custom
actions are created.

Section A. 2 Mediated Deposit.
This implementation does not support mediated deposits. This is not required by the 1.3 profile. The
On-Behalf-Of header/parameter is detected by the code, but not used.

AMSeT Alfresco SWORD Interface

7

Section A. 2.1.
As required, a mediated element is included in the service document and this is set to false to indicate
that mediated deposit is not supported. If a non-empty X-On-Behalf-Of header or form parameter
is received, then an exception is thrown.

Section A. 2.2.
No mediation, so not applicable.

Section A. 3 Developer Features
3.1, 3.2 and 3.3 below are extensions recommended in the SWORD profile v 1.3 in order to ease the
development process.

Section A. 3.1. NoOp (Dry run)
NoOp is not implemented, but a line or two will do it.

Section A. 3.2. Verbose
The X-Verbose header/parameter is processed and a verbose boolean is present in the initialization
property file. In order to implement a verbose return, the verbose description will need to be obtained
from the property file at initialisation.

Section A. 3.3. Client and Server Identity
User-Agent and Generator headers implemented and values are obtained from the initialisation
properties files.

A 6. Nested Service Description
Nested service urls can be supplied from the initialisation property files.

B 5.1. X-On-Behalf-Of
The X-On-Behalf-Of header is processed although the service is not implemented. The service
document returns a mediation = false statement. This is set at initialization.

B 5.3. Creating a Resource
HTTP response code 201 Created is returned after a successful deposit together with a Location
header.

B 5.4. Editing a Resource
Not implemented. Not required by profile.

B 5.5. HTTP Response Codes
Response codes are supplied according to the recommendations of this section. Human readable
explanations are also supplied.

AMSeT Alfresco SWORD Interface

8

7. Category Documents
Not required, not implemented.

8. Service Documents
SWORD parameters version, verbose, noOp and maxUploadSize are presented in the service
document.

8.1. Workspaces
According to the profile, sword:collectionPolicy, sword:mediation,
sword:treatment, sword:acceptPackaging, and sword:service and
dcterms:abstract elements are included in the Collection element.

9.2. Creating Resources with POST
Content-MD5: implemented, not tested.

User-Agent: the web client sets a user agent header.

Content-Disposition: filename : implemented. If a filename is not present in the Content-
Disposition header, the Slug header will be used if present.

X-On-Behalf-Of: the presence of a value here will provoke a 400 Bad Request response.

Future Work
A few tasks will be be required before pressing AMSeT SWORD into live service.

Compliance Testing
Some unit testing is present, and the return XML validates according to the validator provided by the
original SWORD project, but time for testing has been limited.

NoOp and Verbose
The code is there, more or less, but not been switched on.

Authentication and Authorization
Implementation of either Basic Authentication or Java Authentication and Authorisation Specification
(JAAS) and aligning this with the Alfresco permission structures. There is a Spring interceptor bean
in place for handling authentication. If further security is required, deposit authorization will require
a process to retrieve folder permissions for the authenticated user.

Look and Feel
The SWORD JSPs should look like they belong to Alfresco.

XML generation
This is a bit scrappy and could be improved and tied in with either the common-core or with Abdera,
the Atom implementation project.

AMSeT Alfresco SWORD Interface

9

Spring/Alfresco Configuration Files
A bit of rationalisation required involving the contents of the application-context,
servlet-context and module-context files. More ugly than dangerous.

Links
AMSeT Wiki: http://amset.leeds.ac.uk:8080/amsetwiki/

AMSeT Blog: http://www.socketelf.org:8080/roller/amset/

AMSeT SourceForge site: http://sourceforge.net/projects/amset/

About this document
This document was created using the Oxygen XML Editor 10.3 using its DocBook 5.0 schema and
bundled HTML and PDF XSLT transformations.

Brian P. Clark, November 2009

Please see project wiki [http://amset.leeds.ac.uk:8080/amsetwiki/] for contact details.

http://amset.leeds.ac.uk:8080/amsetwiki/
http://www.socketelf.org:8080/roller/amset/
http://sourceforge.net/projects/amset/
http://amset.leeds.ac.uk:8080/amsetwiki/
http://amset.leeds.ac.uk:8080/amsetwiki/

	AMSeT Alfresco SWORD Interface
	Table of Contents
	What is this document?
	Who should read this document?
	Introduction
	Software Requirements
	AMSet Alfresco SWORD Software
	Overview
	Licensing
	Main SpringMVC Beans

	AMP Files
	config
	lib
	/web/jsp
	module.properties
	file-mapping.properties
	Loading AMP module with Module Management Tool

	Compliance with SWORD Profile 1.3
	Section A. 1.1.
	Section A. 2 Mediated Deposit.
	Section A. 2.1.
	Section A. 2.2.
	Section A. 3 Developer Features
	Section A. 3.1. NoOp (Dry run)
	Section A. 3.2. Verbose
	Section A. 3.3. Client and Server Identity
	A 6. Nested Service Description
	B 5.1. X-On-Behalf-Of
	B 5.3. Creating a Resource
	B 5.4. Editing a Resource
	B 5.5. HTTP Response Codes
	7. Category Documents
	8. Service Documents
	8.1. Workspaces
	9.2. Creating Resources with POST

	Future Work
	Compliance Testing
	NoOp and Verbose
	Authentication and Authorization
	Look and Feel
	XML generation
	Spring/Alfresco Configuration Files

	Links
	About this document

