
Booth and Clark, ALT-C, Edinburgh 2006

b.p.clark@leeds.ac.uk, 30/08/06 1

ALT-2006. Update to Research Paper: The WAFFLE bus: a
model for a service-oriented learning architecture.

1. Introduction
It is 6 months since the original WAFFLE bus paper was written and significant
progress has been made, especially in relation to the Service-Oriented Virtual
Learning Environment (SOVLE) component. This document describes the latest
SOVLE design.

2. SOVLE Features
The JISC ELF Toolkit project, Service-Oriented Consumer Kit for ELF Tools
(SOCKET) has helped illuminate the possibilities that arise from a VLE built on
service-oriented architectural principles. Using mature technology and standards, we
have produced a design for a SOVLE that is characterised by the following features.

• SOVLE can act as a complete VLE solution, or as a services gateway for
existing VLEs.

• A completely configurable container/resource model: buildings, floors and
rooms, for example; or modules and courses; or any combination.

• Each user can have a personal VLE (like a personal Bodington Building).
• Resources can be components or Web services (consumers or providers).
• A homogeneous management layer exists for both components and services.
• Every resource is a plugin.
• Resources can be hot deployed & undeployed, and dynamically re-configured.
• The capability is present to manage a distributed Service-Oriented Learning

Architecture (SOLA) based on an Enterprise Service Bus (ESB) methodology
and secured by the Guanxi security system.

• Multichannel access is fundamental to design: PCs, portals, mobile devices.
• Decimated development cost compared to typical monolithic VLE – only the

framework is being built: all resources are imported.

3. Implementation
The SOVLE conforms to what software architects call a Model-View-Controller
(MVC) design pattern. This maximises the separation of software concerns into the
three layers shown in Figure 1.

Brief summaries of these layers are given below.

3.1 View Layer
Suitable candidates for the SOVLE view technology
are Cocoon, JavaServer Pages (JSP), and Freemarker,
all of which were investigated in the course of the
SOCKET project. (Note that each individual plugin
resource is free to make an independent choice on the
view technology – there are no restrictions.)

 Figure 1. Three-layer structure.

View Layer

Container Model

Resource Layer

Booth and Clark, ALT-C, Edinburgh 2006

b.p.clark@leeds.ac.uk, 30/08/06 2

3.2 Container Model Layer
Each SOVLE view consists of the contents of one (or more) containers. Each view is
described by an xml file conforming to a group- or role-dependent container
configuration schema. This can be passed to the view technology directly (Cocoon or
Framework, for example) or as a JavaBean (JSP).

3.3 Resource Layer
Examples of possible types of SOVLE resources are Web applications, Web service
providers, SOCKET service consumers, Java Business Integration (JBI) containers,
and generic resources (Figure 2). Web applications can be exposed externally as
services or Web Services for Remote Portlets (WSRP) using Web service proxy
objects.

JBI is the standard Java
technology for the integration
of Web services. Eventually,
SOCKET services will also
be implemented inside a JBI
container. The JBI objects
are the basic units (“service
containers”) of a distributed
Enterprise Service Bus (ESB)
system. Message mediation
such as XSLT transformation
and Web service workflows is
accommodated as part of the
JBI architecture.

Figure 2. Plugin structure of resource layer.

Each resource is associated with at least one Java Management Extensions (JMX)
Management Bean (MBean). The MBean exposes the functionality of the underlying
resource, an Application Programming Interface (API) for applications, or Service
Programming Interface (SPI) in the case of services. Fine-grained access to a
resource is achieved by mapping group information onto application roles.

All MBeans are registered with an MBeanServer object which becomes the runtime
service registry for the SOVLE through which a management application can control
and configure the system.

